Absence of SP-A modulates innate and adaptive defense responses to pulmonary influenza infection.
نویسندگان
چکیده
Mice lacking surfactant protein SP-A [SP-A(-/-)] and wild type SP-A(+/+) mice were infected with influenza A virus (IAV) by intranasal instillation. Decreased clearance of IAV was observed in SP-A(-/-) mice and was associated with increased pulmonary inflammation. Treatment of SP-A(-/-) mice with exogenous SP-A enhanced viral clearance and decreased lung inflammation. Uptake of IAV by alveolar macrophages was similar in SP-A(-/-) and SP-A(+/+) mice. Myeloperoxidase activity was reduced in isolated bronchoalveolar lavage neutrophils from SP-A(-/-) mice. B lymphocytes and activated T lymphocytes were increased in the lung and spleen, whereas T helper (Th) 1 responses were increased [interferon-gamma, interleukin (IL)-2, and IgG(2a)] and Th2 responses were decreased (IL-4, and IL-10, and IgG(1)) in the lungs of SP-A(-/-) mice 7 days after IAV infection. In the absence of SP-A, impaired viral clearance was associated with increased lung inflammation, decreased neutrophil myeloperoxidase activity, and increased Th1 responses. Because the airway is the usual portal of entry for IAV and other respiratory pathogens, SP-A is likely to play a role in innate defense and adaptive immune responses to IAV.
منابع مشابه
Pulmonary surfactant protein D in first-line innate defence against influenza A virus infections.
Influenza A viruses (IAV) cause respiratory tract infections annually associated with excess mortality and morbidity. Nonspecific, innate immune mechanisms play a key role in protection against viral invasion at early stages of infection. A soluble protein present in mucosal secretions of the lung, surfactant protein D (SP-D), is an important component of this initial barrier that helps to prev...
متن کاملRole of surfactant protein A and D (SP-A and SP-D) in human antiviral host defense.
SP-A and SP-D contribute to host defense against respiratory viral infection. The most extensive body of evidence relates to influenza A viruses (IAV), and evidence from gene-deleted mice also indicate a role for surfactant collectins in defense against respiratory syncytial virus (RSV) and adenovirus. Some important respiratory pathogens including rhinovirus and metapneumovirus have not yet be...
متن کاملKiller Cell Immunoglobulin-Like Receptors Influence the Innate and Adaptive Immune Responses
Natural killer (NK) cells are a subset of lymphocytes which play a crucial role in early innate immune response against infection and tumor transformation. Furthermore, they secrete interferon-γ (IFN-γ) and tumor necrosis factor (TNF) prompting adaptive immu-nity. NK cells distinguish the unhealthy cells from the healthy ones through an array of cell-surface receptors. Human NK cells use inhibi...
متن کاملRegulatory T cells and IL10 suppress pulmonary host defense during early-life exposure to radical containing combustion derived ultrafine particulate matter
BACKGROUND Exposure to elevated levels of particulate matter (PM) is associated with increased risk of morbidity and mortality due to respiratory tract viral infections in infants. Recent identification of environmentally persistent free radicals (EPFRs) in the PM from a variety of combustion sources suggests its role in the enhancement of disease severity of lower respiratory tract infections ...
متن کاملIncreased MDSC Accumulation and Th2 Biased Response to Influenza A Virus Infection in the Absence of TLR7 in Mice
Toll-like receptors (TLRs) play an important role in the induction of innate and adaptive immune response against influenza A virus (IAV) infection; however, the role of Toll-like receptor 7 (TLR7) during the innate immune response to IAV infection and the cell types affected by the absence of TLR7 are not clearly understood. In this study, we show that myeloid derived suppressor cells (MDSC) a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 282 3 شماره
صفحات -
تاریخ انتشار 2002